Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents
نویسندگان
چکیده
Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle.
منابع مشابه
Neuregulins Response to Exercise: a Mini Review
The Neuregulin is a member of the epidermal growth factors (EGF) family of receptor kinases, was originally identified as the product of the transforming gene derived from chemically induced rat neuroblastoms. A variety of different protein isoforms are produced from single Neuregulin gene. Four distinct vertebrate gene encode Neuregulin, prosaically named NRG1, NRG2, NRG3, and NRG4. Most of bi...
متن کاملMyostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins.
Myostatin is a negative regulator of skeletal muscle growth and in fact acts as a potent inducer of "cachectic-like" muscle wasting in mice. The mechanism of action of myostatin in promoting muscle wasting has been predominantly studied in murine models. Despite numerous reports linking elevated levels of myostatin to human skeletal muscle wasting conditions, little is currently known about the...
متن کاملResponses of Muscle Mitochondrial Function to Physical Activity: A Literature Review
Skeletal muscles play an active role in regulating the metabolic homeostasis through their ability for relating to adipose tissue and endocrine hormones. Contraction of the skeletal muscle leads to increased release of several myokines, such as irisin, which is able to interact with the adipose tissue. Physical activity promotes the irisin mechanism by augmenting the peroxisomes (PGC1-α) in the...
متن کاملMyostatin regulates cardiomyocyte growth through modulation of Akt signaling.
Myostatin is a highly conserved, potent negative regulator of skeletal muscle hypertrophy in many species, from rodents to humans, although its mechanisms of action are incompletely understood. Transcript profiling of hearts from a genetic model of cardiac hypertrophy revealed dramatic upregulation of myostatin, not previously recognized to play a role in the heart. Here we show that myostatin ...
متن کاملLower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin.
Mutations in the myostatin gene are associated with hypermuscularity, suggesting that myostatin inhibits skeletal muscle growth. We postulated that increased tissue-specific expression of myostatin protein in skeletal muscle would induce muscle loss. To investigate this hypothesis, we generated transgenic mice that overexpress myostatin protein selectively in the skeletal muscle, with or withou...
متن کامل